Accurate and timely flood inundation maps serve as crucial information for hydrologists, first‐responders, and decision makers of natural disaster management agencies. In this study, two modeling approaches are applied to estimate the inundation area for a large flooding event that occurred in May 2016 in the Brazos River: (1) Height Above the Nearest Drainage combined with National Hydrograph Dataset Plus (NHDPlus‐HAND) and (2) International River Interface Cooperative — Flow and Sediment Transport with Morphological Evolution of Channels (iRIC‐FaSTMECH). The inundation extents simulated from these two modeling approaches are then compared against the observed inundation extents derived from a Landsat 8 satellite image. The simulated results from NHDPlus‐HAND and iRIC‐FaSTMECH show 56% and 70% of overlaps with the observed flood extents, respectively. A modified version of the NHDPlus‐HAND model, considering networked catchment behaviors, is also tested with an improved fitness of 67%. This study suggests that NHDPlus‐HAND has the potential for real‐time continental inundation forecast due to its low computational cost and ease to couple with the National Water Model. Better performance of NHDPlus‐HAND can be achieved by considering the inter‐catchment flows during extreme riverine flood events. Overall, this study presents a comprehensive examination made of remote sensing compared with HAND‐based inundation mapping in a region of complex topography.