We propose the use of a context-sensitive support vector machine (csSVM) to enhance the performance of a conventional support vector machine (SVM) for identifying diffuse interstitial lung disease (DILD) in high-resolution computerized tomography (HRCT) images. Nine hundred rectangular regions of interest (ROIs), each 20 × 20 pixels in size and consisting of 150 ROIs representing six regional disease patterns (normal, ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation), were marked by two experienced radiologists using consensus HRCT images of various DILD. Twenty-one textual and shape features were evaluated to characterize the ROIs. The csSVM classified an ROI by simultaneously using the decision value of each class and information from the neighboring ROIs, such as neighboring region feature distances and class differences. Sequential forward-selection was used to select the relevant features. To validate our results, we used 900 ROIs with fivefold cross-validation and 84 whole lung images categorized by a radiologist. The accuracy of the proposed method for ROI and whole lung classification (89.88 ± 0.02%, and 60.30 ± 13.95%, respectively) was significantly higher than that provided by the conventional SVM classifier (87.39 ± 0.02%, and 57.69 ± 13.31%, respectively; paired t test, p < 0.01, and p < 0.01, respectively). We conclude that our csSVM provides better overall quantification of DILD.