Structural lumber is designed to meet the technical standards that ensure safety, cost-effectiveness, and sustainability. However, some tree species face limitations in their growth, which restricts their widespread use. An example of this is Nothofagus alpina, which has excellent mechanical properties but is not utilized much due to the challenges in extracting its timber and poor utilization, mainly because of the length of the wood. There is little information concerned with the uses and better management of small pieces using Nothofagus species, but it is still insufficient. This study investigates the adhesion performance of green-glued finger joints with varying wood ring orientations and moisture contents ranging from 21% to 25% using Nothofagus alpina. The primary aim is to assess how ring orientation and wet timber affect the green gluing process for creating larger wood pieces than sawn wood. The resulting products could meet the standards for wood serviceability number three for native Chilean wood. The findings indicate that finger joint performance improves with higher timber moisture levels. However, the orientation of the wood fibers did not significantly affect the performance under the tested conditions. It is important to note that this effect may become more significant near the fiber saturation point. These findings emphasize the need for a detailed protocol on the green gluing technique for Nothofagus alpina and the associated drying and surface processes in finger joint construction.