Purpose: To present an alternative method for summing biologically effective doses of intensity-modulated arc therapy (IMAT) as teletherapy (TT), with interstitial high-dose-rate (HDR) brachytherapy (BT) boost in prostate cancer. Total doses using IMAT boost was compared with BT boost using our method. Material and methods: Initially, 25 IMAT TT plus interstitial HDR-BT plans were included, and additional plans using IMAT TT boost were created. The prescribed dose was 2/44 Gy to the whole pelvis, 2/60 Gy to the prostate and seminal vesicles, and 1 × 10 Gy BT or 2/18 Gy IMAT TT to the prostate. Teletherapy computed tomography (CT) was registered with ultrasound (US) of BT, and the most exposed volume of critical organs in BT were identified on these CT images. The minimal dose of these from IMAT TT was summed with their BT dose, and these EQD 2 doses were compared using BT vs. IMAT TT boost. This method was compared with uniform dose conception (UDC). Results: D 90 of the prostate was significantly higher with BT than with IMAT TT boost: 99.3 Gy vs. 77.9 Gy, p = 0.0034. The D 2 to rectum, bladder, and hips were 50.3 Gy vs. 76.8 Gy (p = 0.0117), 64.7 Gy vs. 78.3 Gy (p = 0.0117), and 41.9 Gy vs. 50.6 Gy (p = 0.0044), while D 0.1 to urethra was 96.1 Gy vs. 79.3 Gy (p = 0.0180), respectively. UDC overestimated D 2 (rectum) by 37% (p = 0.0117), D 2 (bladder) by 5% (p = 0.0214), and underestimated D 0.1 (urethra) by 1% (p = 0.0277). Conclusions: Based on our biological dose summation method, the total dose of prostate is higher using BT boost than the IMAT. BT boost yields lower rectum, bladder, and hips doses, but higher dose to urethra. UDC overestimates rectum and bladder dose and underestimates the dose to urethra.