Purpose: When investigating new radiation therapy techniques in the treatment planning stage, it can be extremely time consuming to locate multiple patient scans that match the desired characteristics for the treatment. With the help of machine learning, we propose to bypass the difficulty in finding patient computed tomography (CT) scans that match the treatment requirements. Furthermore, we aim to provide the developed method as a tool that is easily accessible to interested researchers. Methods: We propose a generative adversarial network (GAN) to edit individual volumes of interest (VOIs) in pre-existing CT scans, translating features of the healthy VOIs into features of cancerous volumes. Training and testing was done using VOIs from a dataset of 460 diagnostic and lung cancer screening CT scans. Agreement between real tumors and those produced by the editor was tested by comparing the distributions of several histogram parameters and second-order statistics as well as using qualitative analysis. Results: After training, the network was successfully able to map healthy CT segments to realistic looking cancerous volumes. Based on visual inspection, tumors produced by the editor were found to be both realistic and visually consistent with the surrounding anatomy when placed back into the original CT scan. Furthermore, the network was found to be able to extrapolate well beyond the upper size limit of the training set. Lastly, a graphical user interface (GUI) was developed to easily interact with the resulting network. Conclusion: The trained network and associated GUI can serve as a tool to develop an abundance of lung cancer patient data to be used in treatment planning. In addition, this method can be extended to a variety of cancer types if given an appropriate baseline dataset.