The article presents a formulation of a problem of trajectory optimization using low-thrust engines for an optical space system based on diffractive membranes. A methodology, where first stage nominal trajectories and control programs are selected and then corrected at the longrange guidance, has been developed for solving the problem of optimizing the trajectories of a flight to a geostationary orbit. At the final stage, algorithms for terminal control are formed, which allows to deliver a cosmic optical system based on diffraction membranes to a given point in the geostationary orbit. The end result is acquisition of Pareto-optimal solutions in the coordinates "characteristic speed-duration of the flight", where each point of the set of solutions has a corresponding a measure of accuracy of payload delivery to a geostationary orbit at a given set of coordinates.