“…When considering more remanufacturing cycles, though, Cruz Sanchez et al [37] showed that neat PLA is very prone to material degradation, as the tensile strength of 3D-printed samples deteriorated by approximately 40% after only five remanufacturing cycles. Although plenty of studies have recently investigated the processability of complex recycled regional postconsumer waste by FFF and have even recommended the use of so-called RecycleBots [38,39,40], such as blends of polyethylene [39,41,42,43,44,45], polypropylene (PP) [44,46,47,48,49,50], polyethylene terephthalate (PET) [49,50,51], acrylonitrile butadiene styrene (ABS) [49,52], poly(lactic acid) (PLA) [49,53], polystyrene (PS) [50], polyvinyl alcohol (PVA) [54], or polyamide (PA) [55], the effect of multiple AM and filament extrusion sequences on the processability of materials more complex than the standard FFF material PLA, which is known to be susceptible to thermal degradation [9], has not yet been studied. Moreover, neither the positive effect of thermal stabilizers on retaining mechanical strength [56] nor the degradation of a filler–matrix interface with increasing re-extrusion cycles [57] has been confirmed for advanced composites used in FFF.…”