Topology optimisation is an effective approach to design extreme lightweight components. However, most of the resulted optimum lightweight components usually have complex structures which cannot be produced successfully by traditional manufacturing processes. Selective laser melting is one of the additive manufacturing processes. It shows powerful capacity in the manufacturing of metal components with complex structures. Therefore, the combination of topology optimisation and selective laser melting shows a promising prospect for metal components. However, support structures were usually introduced during the selective laser melting manufacturing process, which resulted to some disadvantages, for example, the support structures are generally difficult to remove from the original components because it is difficult to clamping and machining. Therefore, a design method was proposed in this study, named lightweight and support-free design method, the detailed design process and advantages were presented. In the design process, topology optimisation was applied to realise lightweight design, and support-free design process was developed to meet the support-free requirement. Finally, as a case, a cross-beam component was designed using the proposed method, and the final model was produced successfully using selective laser melting process. The case study result verified that the proposed design method is effective to design lightweight and support-free industrial metal components for SLM process.