Coarse meshes can be recursively subdivided into denser and denser meshes by dividing their faces into several smaller faces and repositioning the vertices according to carefully designed subdivision rules. This process leads to smooth surfaces, such as in the case of Catmull-Clark or Loop subdivision, but often suffers from shading artifacts near extraordinary points due to the lower quality of the normal field there, typically corresponding to only tangent-plane (and not higher) continuity at these points. The idea of subdivision shading is to apply the same subdivision rules that are used to subdivide geometry to also subdivide the normals associated with mesh vertices. This leads to smoother normal fields, which can be used for shading purposes, and this in turn removes the shading artifacts. However, the original subdivision shading method does not support sharp and semi-sharp creases, which are desired ingredients in subdivision surface modelling. We present two approaches to extending subdivision shading to work also on models with (semi-)sharp creases, and demonstrate this in the cases of Catmull-Clark as well as Loop subdivision.