The hybrid process, which integrates two or more different processes such as additive manufacturing and subtractive manufacturing, has gained appreciable considerations in recent years. This process exploits the benefits of individual processes while overcoming their limitations. Lately, the combination of additive, subtractive, and inspection methods is a valuable conglomeration, considering its potential to produce complicated components precisely. Certainly, computer-aided process plan (CAPP) provides a crucial link among different processes and is essential to avail the benefits of hybridization. However, a valuable process plan can only be achieved through the optimization of its different elements. Therefore, the objective of this work is the accomplishment of an optimized CAPP to fabricate parts in the shortest time employing the hybrid additive, subtractive, and inspection processes. In this work, mathematical models have been developed to optimize part orientation as well as minimize additive and subtractive times. Additionally, the genetic algorithm has been employed to obtain the best path with minimum inspection time. The feasibility and capability of the proposed approach as well as the optimized CAPP for the hybrid process have been demonstrated through a case study.