Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Research on the service values of urban ecosystems is a hot topic of ecological studies in the current era of rapid urbanization. To quantitatively estimate the ecosystem service value in Chengdu, China from the perspectives of natural ecology and social ecology, the technologies of remote sensing (RS) and geographic information system (GIS) are utilized in this study to extract the land use type information from RS images of Chengdu in 2003, 2007, 2013 and 2018. Subsequently, a driver analysis of the ecosystem services of Chengdu was performed based on socioeconomic data from the last 16 years. The results indicated that: (1) from 2003 to 2018, the land utilization in Chengdu changed significantly, with the area of cultivated lands, forest lands and water decreasing remarkably, while the area of construction lands dramatically increased. (2) The ecosystem services value (ESV) of Chengdu decreased by 30.92% in the last 16 years, from CNY 2.4078 × 1010 in 2003 to CNY 1.6632 × 1010 in 2018. Based on a future simulation, the ESV is further predicted to be reduced to CNY 1.4261 × 1010 by 2033. (3) The ESV of Chengdu showed a negative correlation with the total population, the urbanization rate and the per capita GDP of the region, indicating that the ESV of the studied region was inter-coupled with the socioeconomic development and can be maintained at a high level through rationally regulating the socioeconomic structure.
Research on the service values of urban ecosystems is a hot topic of ecological studies in the current era of rapid urbanization. To quantitatively estimate the ecosystem service value in Chengdu, China from the perspectives of natural ecology and social ecology, the technologies of remote sensing (RS) and geographic information system (GIS) are utilized in this study to extract the land use type information from RS images of Chengdu in 2003, 2007, 2013 and 2018. Subsequently, a driver analysis of the ecosystem services of Chengdu was performed based on socioeconomic data from the last 16 years. The results indicated that: (1) from 2003 to 2018, the land utilization in Chengdu changed significantly, with the area of cultivated lands, forest lands and water decreasing remarkably, while the area of construction lands dramatically increased. (2) The ecosystem services value (ESV) of Chengdu decreased by 30.92% in the last 16 years, from CNY 2.4078 × 1010 in 2003 to CNY 1.6632 × 1010 in 2018. Based on a future simulation, the ESV is further predicted to be reduced to CNY 1.4261 × 1010 by 2033. (3) The ESV of Chengdu showed a negative correlation with the total population, the urbanization rate and the per capita GDP of the region, indicating that the ESV of the studied region was inter-coupled with the socioeconomic development and can be maintained at a high level through rationally regulating the socioeconomic structure.
Vegetation generally appears scattered in drylands. Its structure, composition and spatial patterns are key controls of biotic interactions, water, and nutrient cycles. Applying segmentation methods to very high-resolution images for monitoring changes in vegetation cover can provide relevant information for dryland conservation ecology. For this reason, improving segmentation methods and understanding the effect of spatial resolution on segmentation results is key to improve dryland vegetation monitoring. We explored and analyzed the accuracy of Object-Based Image Analysis (OBIA) and Mask Region-based Convolutional Neural Networks (Mask R-CNN) and the fusion of both methods in the segmentation of scattered vegetation in a dryland ecosystem. As a case study, we mapped Ziziphus lotus, the dominant shrub of a habitat of conservation priority in one of the driest areas of Europe. Our results show for the first time that the fusion of the results from OBIA and Mask R-CNN increases the accuracy of the segmentation of scattered shrubs up to 25% compared to both methods separately. Hence, by fusing OBIA and Mask R-CNNs on very high-resolution images, the improved segmentation accuracy of vegetation mapping would lead to more precise and sensitive monitoring of changes in biodiversity and ecosystem services in drylands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.