Because of the difficulty in fault detection for and diagnosing the adjustment hydraulic servomotor, this paper uses feature extraction technology to extract the time domain and frequency domain features of the pressure signal of the adjustment hydraulic servomotor and splice the features of multiple pressure signals through the Multi-source Information Fusion (MSIF) method. The comprehensive expression of device status information is obtained. After that, this paper proposes a fault detection Algorithm GA-SVDD-neg, which uses Genetic Algorithm (GA) to optimize Support Vector Data Description with negative examples (SVDD-neg). Through joint optimization with the Mutual Information (MI) feature selection algorithm, the features that are most sensitive to the state deterioration of the adjustment hydraulic servomotor are selected. Experiments show that the MI algorithm has a better performance than other feature dimensionality reduction algorithms in the field of the abnormal detection of adjustment hydraulic servomotors, and the GA-SVDD-neg algorithm has a stronger robustness and generality than other anomaly detection algorithms. In addition, to make full use of the advantages of deep learning in automatic feature extraction and classification, this paper realizes the fault diagnosis of the adjustment hydraulic servomotor based on 1D Convolutional Neural Network (1DCNN). The experimental results show that this algorithm has the same superior performance as the traditional algorithm in feature extraction and can accurately diagnose the known faults of the adjustment hydraulic servomotor. This research is of great significance for the intelligent transformation of adjustment hydraulic servomotors and can also provide a reference for the fault warning and diagnosis of the Electro-Hydraulic (EH) system of the same type of steam turbine.