Research on the intelligent fault diagnosis method of rolling bearing based on laboratory data has made some achievements. However, due to the change of working conditions and the lack of historical data of the same equipment in the actual diagnosis, some methods mostly have problems such as poor generalization. Model training and verification data are insufficient, and engineering practice still lacks effective intelligent fault diagnosis methods. In this paper, we propose a weighted k-nearest neighbor (WKNN) fault diagnosis model based on multi-dimensional sensitive features, and propose a fault diagnosis method for rolling bearings that adapts to different equipment and different operating conditions. First, we extract time domain, frequency domain, and entropy features of the original signal to form the raw signal feature set. Then, the iterative ReliefF feature screening method is used to evaluate the joint feature set, calculate the weight of each feature, remove insensitive and redundant features, and obtain a highdimensional sensitive feature set. Finally, the WKNN classification model is used to identify bearing failure modes. The fault diagnosis model was trained using rolling bearing data from the Case Western Reserve University (CWRU), while laboratory data from the Intelligent Maintenance System (IMS), the Society of Mechanical Failure Prevention Technology (MFPT) and the engineering case data were used for testing. The results show that the model proposed in this paper has high fault diagnosis accuracy and can accurately determine the fault type after early warning. Compared with other comparison methods, the fault recognition accuracy rate is higher. And it is suitable for different working conditions and different equipment, and has good engineering application value.INDEX TERMS Different working conditions, fault diagnosis, multi-dimensional sensitive features, ReliefF, WKNN.