Deteksi dini kanker serviks dapat mencegah dan menunda kematian, salah satunya dengan memanfaatkan teknologi komputer untuk mendiagnosa berbagai jenis sel kanker serviks. Penelitian dilakukan terhadap citra Pap smear yang diambil dari RepomedUNM dengan tujuan mengklasifikasikan citra Pap smear menjadi dua kelas yaitu sel normal dan sel abnormal dengan menggunakan metode AlexNet. Proses awal klasifikasi citra terdiri dari mengubah ukuran dan mengubah citra asli menjadi skala abu-abu. Penelitian ini juga bertujuan untuk mendeteksi tepi citra pap smear yang terdiri dari dua kelas yaitu sel normal dan sel koilocyt. Deteksi tepi menggunakan metode Canny untuk mendapatkan nilai luas, keliling dan diameter sel sitoplasma dan inti sel (nukleus). Proses deteksi tepi Canny terdiri dari proses cropping, mengubah citra asli menjadi grayscale, dan segmentasi citra menggunakan metode thresholding. Hasil klasifikasi 2000 citra Pap smear menghasilkan akurasi sebesar 97,66% dan hasil deteksi tepi dari 50 citra Pap smear dengan metode Canny mampu memberikan hasil yang baik dengan mendeteksi tepi citra sebenarnya dan hasilnya.