This paper aimed to realize intelligent diagnosis of obstetric diseases using electronic medical records (EMRs). The Optimized Kernel Extreme Machine Learning (OKEML) technique was proposed to rebalance data. The hybrid approach of the Hunger Games Search (HGS) and the Arithmetic Optimization Algorithm (AOA) was adopted. This paper tested the effectiveness of the OKEML-HGS-AOA on Chinese Obstetric EMR (COEMR) datasets. Compared with other models, the proposed model outperformed the state-of-the-art experimental results on the COEMR, Arxiv Academic Paper Dataset (AAPD), and the Reuters Corpus Volume 1 (RCV1) datasets, with an accuracy of 88%, 90%, and 91%, respectively.