“…Malode and Sahare (2017) used MFCC for feature extraction and Hidden Markov Model (HMM) for classification in speech recognition system. It has been empirically proven in many publications (Chetty & Wagner, 2005;Chen & Chu, 2006;Rattani et al, 2007;Zhang et al, 2007;Rattani & Tistarelli, 2009;Almayyan et al, 2011;Liau, & Isa, 2011;Bokade & Sapkal, 2012;Park & Kim, 2013;Nadheen & Poornima, 2013;Dhameliya & Chaudhari, 2013;Eskandari et al, 2014;Saleh & Alzoubiady, 2014, Veluchamy & Karlmarx, 2016Haghighat, 2016;Sarhan et al, 2017;Leghari et al, 2018;Carol & Fred, 2018;Supreetha Gowda et al, 2018) that multimodal biometrics systems improve the recognition accuracy by integrating complementary information over unimodal biometrics systems. Features represent rich information about biometrics; fusion at feature level is believed to be bestowing better performance (Veluchamy & Karlmarx, 2016).…”