2016
DOI: 10.1007/978-3-319-49806-5_26
|View full text |Cite
|
Sign up to set email alerts
|

Feature Selection for Effective Botnet Detection Based on Periodicity of Traffic

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
2

Year Published

2017
2017
2021
2021

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 10 publications
0
1
0
2
Order By: Relevance
“…Searching for the best setting for the initial weights of backpropagation feed-forward neural networks is the main concept of this model. The work in [5] introduced a botnets detection method to distinguish between two behaviors: bots having non-periodic and normal traffics which normally reveal periodic behavior. Principal components analysis (PCA) is used for feature selection and J48 algorithm is used for classification.…”
Section: Related Workmentioning
confidence: 99%
“…Searching for the best setting for the initial weights of backpropagation feed-forward neural networks is the main concept of this model. The work in [5] introduced a botnets detection method to distinguish between two behaviors: bots having non-periodic and normal traffics which normally reveal periodic behavior. Principal components analysis (PCA) is used for feature selection and J48 algorithm is used for classification.…”
Section: Related Workmentioning
confidence: 99%
“…Для керування і контролю над інфікованими хостами переважна більшість ботмереж використовують DNS. Крім того, деякі ботмережі використовують методи шифрування корисного навантаження комунікацій по протоколу DNS для того, щоб запобігти їх виявленню [2].…”
Section: вступunclassified
“…На етапі моніторингу на основі ознак, вилучених з вхідних DNS-повідомлень щодо певного доменного імені, будуються вектори ознак. Вони мають такий же вигляд, як і шаблон (2).…”
Section: метод виявлення бот-мереж на основіunclassified