“…Common heuristic optimization algorithms include genetic algorithm (GA) [1], simulated annealing [2], crow search algorithm [3], ant colony optimization [4], differential evolution (DE) [5], particle swarm optimization (PSO) [6], bat algorithm (BA) [7], cuckoo search algorithm (CSA) [8], whale optimization algorithm (WOA) [9], firefly algorithm (FA) [10], grey wolf optimizer (GWO) [11], teaching-learning-based optimization [12], artificial bee colony (ABC) [13], and chimp optimization algorithm (ChOA) [14]. As technology continues to evolve and update, the heuristic optimization algorithms are currently widely applied in various areas of real life, such as the welded beam problem [15], feature selection [16][17][18], the welding shop scheduling problem [19], economic dispatch problem [20], training neural networks [21], path planning [15,22], churn prediction [23], image segmentation [24], 3D reconstruction of porous media [25], bankruptcy prediction [26], tuning of fuzzy control systems [27][28][29], interconnected multi-machine power system stabilizer [30], power systems [31,32], large scale unit commitment problem [33], combined economic and emission dispatch problem [34], multi-robot exploration [35], training multi-layer perceptron [36], parameter estimation of photovoltaic cells [37], and resource allo...…”