2016 6th International Conference - Cloud System and Big Data Engineering (Confluence) 2016
DOI: 10.1109/confluence.2016.7508200
|View full text |Cite
|
Sign up to set email alerts
|

Feature selection in software defect prediction: A comparative study

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
14
0
3

Year Published

2017
2017
2024
2024

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 31 publications
(17 citation statements)
references
References 16 publications
0
14
0
3
Order By: Relevance
“…Pemilihan fitur yang digunakan adalah chisquared dan korelasi pada dataset defect software yang melibatkan lima dataset MDP NASA. Hasil penelitian hanya mendapatkan sedikit fitur dari hasil seleksi fitur, yaitu sekitar 80% dari total fitur yang tersedia [3]. Selain itu, penelitian [4]…”
Section: Study Literaturunclassified
See 1 more Smart Citation
“…Pemilihan fitur yang digunakan adalah chisquared dan korelasi pada dataset defect software yang melibatkan lima dataset MDP NASA. Hasil penelitian hanya mendapatkan sedikit fitur dari hasil seleksi fitur, yaitu sekitar 80% dari total fitur yang tersedia [3]. Selain itu, penelitian [4]…”
Section: Study Literaturunclassified
“…Metode ini mengandung satu langkah penting, yang disebut pemilihan fitur. Langkah ini dapat meningkatkan kinerja klasifikasi, seperti yang dilakukan oleh banyak peneliti [3], [4], [5], dan [6].…”
Section: Introductionunclassified
“…One of the major drawbacks is that they don't predict defect density phase wise. Also, existing studies have concluded that metric selection plays a very important role in defect prediction [18] [19]. Thus metric selection is a very import step in SDP model building.…”
Section: A Metric Selectionmentioning
confidence: 99%
“…In other words, FS methods select prominent features while ensuring the quality of the dataset. In the end, this solves the high dimensionality problem of software defect datasets [24,25].…”
Section: Introductionmentioning
confidence: 99%