2019
DOI: 10.1051/matecconf/201925502004
|View full text |Cite
|
Sign up to set email alerts
|

Feature selection tree for automated machinery fault diagnosis

Abstract: Intelligent machinery fault diagnosis commonly utilises statistical features of sensor signals as the inputs for its machine learning algorithm. Due to the abundance of statistical features that can be extracted from raw signals and the accuracy of inserting all the available features into the machine learning algorithm for machinery fault classification, less accurate fault classification may inadvertently result due to overfitting issues. It is therefore only by selecting the most representative features tha… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 24 publications
0
0
0
Order By: Relevance