Background: In recent years automated data analysis techniques have drawn great attention and are used in almost every field of research including biomedical. Artificial Neural Networks (ANNs) are one of the Computer-Aided-Diagnosis tools which are used extensively by advances in computer hardware technology. The application of these techniques for disease diagnosis has made great progress and is widely used by physicians.An Electrocardiogram carries vital information about heart activity and physicians use this signal for cardiac disease diagnosis which was the great motivation towards our study.Methods: In this study we are using Probabilistic Neural Networks (PNN) as an automatic technique for ECG signal analysis along with a Genetic Algorithm (GA). As every real signal recorded by the equipment can have different artifacts, we need to do some preprocessing steps before feeding it to the ANN. Wavelet transform is used for extracting the morphological parameters and median filter for data reduction of the ECG signal. The subset of morphological parameters are chosen and optimized using GA. We had two approaches in our investigation, the first one uses the whole signal with 289 normalized and de-noised data points as input to the ANN. In the second approach after applying all the preprocessing steps the signal is reduced to 29 data points and also their important parameters extracted to form the ANN input with 35 data points.Results: The outcome of the two approaches for 8 types of arrhythmia shows that the second approach is superior than the first one with an average accuracy of %99.42 .
Conclusions:We have studied 8 types of arrhythmia with high detection accuracy. In the literature, previous attempts are made on 6 types of arrhythmias. The results of the PNN shows that its performance for reduced input signal along with the morphological parameter has the best performance. Also it was noticed that the proper selection of training and testing data sets are of great importance and all the beats of each arrhythmia should not be selected from a single file in the database.