2013
DOI: 10.18494/sam.2013.839
|View full text |Cite
|
Sign up to set email alerts
|

Feature Selection Using Support Vector Machines and Independent Component Analysis for Wound Infection Detection by Electronic Nose

Abstract: When mice are used as experimental subjects in the detection of wound infection based on electronic nose (Enose), the background, i.e., the smell of the mice themselves, is very strong, and most useful information is buried in it. A new feature selection technique specifically designed to work with support vector machine (SVM) and independent component analysis (ICA) is introduced. The features that represent background and noise are eliminated to improve classification accuracy. To assess this new method, two… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?