The remote interaction between a weak polyacrylic acid polyelectrolyte (gpac) and a weak polyethyleneimine polybase (gpei) is studied as a function of time at their different molar ratios and states in an aqueous medium. To predict the possibility of activation of the studied hydrogels, electrochemical properties were studied by conductometry and pH metry. During pH measurement, it was found that 24 hours of pH have the lowest values, indicating a high content of H+ ions in the aqueous medium. The dependence of the specific electrical conductivity, the maximum value at the ratio of 3:3 (PAC:PEI) and it coincides with the result of pH from the ratio of components. The obtained results indicate that significant changes in the electrochemical and conformational values of the initial macromolecules in the interpolymer system occur in this interpolymer system. Thus, studies have shown on the presence of a remote interaction between hydrogels and their mutual activation. With an increase in the content of one of the hydrogels in the solution, a significant increase in the swelling of hydrogels is observed in proportion to the concentration of the second component, which indicates their mutual activation.