Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Non-indigenous species may pose a threat to native ecosystems worldwide. In aquatic environments, invasives may have a negative impact on human food security and livelihoods. Several water fleas (Crustacea: Branchiopoda: Cladocera) are notorious invasive alien species influencing large freshwater lake systems and even inland seas. In the current review, we discuss the state of knowledge regarding non-indigenous species in the Cladocera and their invasiveness potential in different continents. We argue that the potential impacts and occurrence of cladoceran exotics may be higher than generally assumed. We critically review 79 cases from literature sources, involving 61 cladoceran taxa where records outside of their natural distribution ranges were previously interpreted as invasions. We assessed the probability of natural range expansions versus human-mediated introductions and we discuss several major corridors of invasion. We estimate human-mediated transportations for at least 43 taxa (out of 61; ca 70%), while other cases can be seen as natural expansions of their distribution ranges (not necessarily/not likely human-mediated) and/or taxonomical confusion. We confirm non-indigenous presence in recipient regions for at least 41 cladoceran taxa, of which several are true invasives (i.e., with negative impacts on native ecosystems). The majority are zooplankters with effects on pelagic freshwater ecosystems, yet we also report on introductions by littoral taxa. We argue that cryptic introductions of cladocerans are taking place on a global scale, yet they remain under the radar. We highlight several striking case studies, such as the Ponto–Caspian onychopods that have invaded the Baltic Sea and the Laurentian Great Lakes, and several clones of the anomopod genera Daphnia and Bosmina that have successfully colonised new environments, causing equilibria shifts in native aquatic worlds. At the same time, we dispel some myths about taxa that were misconstrued as invasive in certain localities. Based on our review, the first of its kind for freshwater zooplankton, future environmental monitoring tools including molecular techniques and detailed surveys with rigorous and critical taxonomical assessments may help to provide a clearer picture on the extent of invasiveness of cladocerans.
Non-indigenous species may pose a threat to native ecosystems worldwide. In aquatic environments, invasives may have a negative impact on human food security and livelihoods. Several water fleas (Crustacea: Branchiopoda: Cladocera) are notorious invasive alien species influencing large freshwater lake systems and even inland seas. In the current review, we discuss the state of knowledge regarding non-indigenous species in the Cladocera and their invasiveness potential in different continents. We argue that the potential impacts and occurrence of cladoceran exotics may be higher than generally assumed. We critically review 79 cases from literature sources, involving 61 cladoceran taxa where records outside of their natural distribution ranges were previously interpreted as invasions. We assessed the probability of natural range expansions versus human-mediated introductions and we discuss several major corridors of invasion. We estimate human-mediated transportations for at least 43 taxa (out of 61; ca 70%), while other cases can be seen as natural expansions of their distribution ranges (not necessarily/not likely human-mediated) and/or taxonomical confusion. We confirm non-indigenous presence in recipient regions for at least 41 cladoceran taxa, of which several are true invasives (i.e., with negative impacts on native ecosystems). The majority are zooplankters with effects on pelagic freshwater ecosystems, yet we also report on introductions by littoral taxa. We argue that cryptic introductions of cladocerans are taking place on a global scale, yet they remain under the radar. We highlight several striking case studies, such as the Ponto–Caspian onychopods that have invaded the Baltic Sea and the Laurentian Great Lakes, and several clones of the anomopod genera Daphnia and Bosmina that have successfully colonised new environments, causing equilibria shifts in native aquatic worlds. At the same time, we dispel some myths about taxa that were misconstrued as invasive in certain localities. Based on our review, the first of its kind for freshwater zooplankton, future environmental monitoring tools including molecular techniques and detailed surveys with rigorous and critical taxonomical assessments may help to provide a clearer picture on the extent of invasiveness of cladocerans.
The resilience of natural systems may be severely compromised by anthropogenic influences. In this paper, the principal anthropogenic influences on the ecosystem of the Armenian highland lake Sevan during the past century are identified. The diversity and severity of the pressures were influenced by national priorities and the catchment's growth. Changes in the lake's morphometry and the littoral's morphology, as well as unsustainable usage of the lake's fish resources, were among the repercussions. They are discussed depending on how each sort of disturbance affects the ecosystem. Although the timing and degree of each stressor were specified, identifying the direct effects of each stressor was often challenging. The current management decisions and future threats to the lake's ecosystem are discussed. This article describes the history of the anthropogenic change of Lake Sevan and, using it as an example, assesses the ecological footprint of people on natural resources and their repercussions.
We studied the quantitative composition, spatial distribution, and temporal dynamics of the zooplankton community of the alpine Lake Sevan, Armenia, the largest surface water in the Caucasus region. This article is providing a long-term information and fills the research gap of multiyear data on zooplankton, as the previous research on zooplankton provided only snapshots of the community, and a consistent assessment over multiple years was missing. However, an initial mini-review of historical studies indicated that zooplankton biomass and fish abundance were undergoing large fluctuations, indicating the importance of top-down control. We analysed 239 samples from the period 2016-2019 from 32 sampling sites in Lake Sevan and recorded 37 species of meso- and macrozooplankton (Rotifers, Copepods, Cladocera). Biomass fluctuations were high with peaking biomasses in 2016 and lowest biomasses in 2018, yearly averaged biomass varied about one order of magnitude. Variability over time was hence much higher than spatial variability. The pelagic habitat at the deepest part of the lake showed the highest diversity and biomasses but contrasts between sampling sites remained smaller than changes from year to year or seasonally. Many samples were dominated by a single species, and these key species explain observed biomass dynamics to a wide extent. We applied hierarchical clustering in order to identify phenological groups that appear to show similar patterns of occurrence. This clustering resulted in 6 groups where of 5 groups just consisting of one single species and these 5 key species were the Cladocerans Daphnia magna, Daphnia hyalina, Diaphanosoma sp. as well as the calanoids Arctodiaptomus bacillifer and Acanthodiaptomus denticornis. The most important species in Lake Sevan’s zooplankton during the observation period was D. magna, which reached high biomasses in 2016 and 2017 but then suddenly almost disappeared in 2018 and 2019. When there were more D. magna present, the water became clearer, which was measured using Secchi depth. This shows that these large water fleas effectively controlled the amount of phytoplankton in the water. Daphnia magna, in turn, managed to dominate zooplankton community only during times of extremely low fish biomass indicating strong top-down control of this large Cladoceran by fish. Both observations together imply a strong trophic linkage between fish, zooplankton, and phytoplankton and provide evidence for trophic cascades in Lake Sevan. Besides the novel insights into zooplankton community dynamics of this unique lake of high socio-economical, cultural, and ecological importance, our study also points to potential management opportunities for eutrophication control by biomanipulation, as well as our investigation allows us to conclude that probably biotic factors were more important than abiotic factors in explaining the observed changes and dynamics within the plankton community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.