2022
DOI: 10.48550/arxiv.2210.08285
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

FedCross: Towards Accurate Federated Learning via Multi-Model Cross Aggregation

Abstract: Due to the remarkable performance in preserving data privacy for decentralized data scenarios, Federated Learning (FL) has been considered as a promising distributed machine learning paradigm to deal with data silos problems. Typically, conventional FL approaches adopts a one-to-multi training scheme, where the cloud server keeps only one single global model for all the involved clients for the purpose of model aggregation. However, this scheme suffers from inferior classification performance, since only one g… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 25 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?