2024
DOI: 10.54097/wvfhcd40
|View full text |Cite
|
Sign up to set email alerts
|

Federated Learning Security Threats and Defense Approaches

Zecheng Feng

Abstract: Artificial intelligence technology has developed rapidly. As a new technology, Federated learning can keep all parties' data locally and train the global model together with all data parties. Therefore, it can solve the problem of "data islands" while protecting privacy, so Federated learning is widely used. However, the existing Federated learning system still has many loopholes. For example, when uploading a local model, an attacker may mix in models with incorrect data. This requires corresponding defensive… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 9 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?