Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The use of AI holds great promise for radiation oncology, with many applications being reported in the literature, including some of which are already in clinical use. These are mainly in areas where AI provides benefits in efficiency (such as automatic segmentation and treatment planning). Prediction models that directly impact patient decision-making are far less mature in terms of their application in clinical practice. Part of the limited clinical uptake of these models may be explained by the need for broader knowledge, among practising clinicians within the medical community, about the processes of AI development. This lack of understanding could lead to low commitment to AI research, widespread scepticism, and low levels of trust. This attitude towards AI may be further negatively impacted by the perception that deep learning is a “black box” with inherently low transparency. Thus, there is an unmet need to train current and future clinicians in the development and application of AI in medicine. Improving clinicians' AI-related knowledge and skills is necessary to enhance multidisciplinary collaboration between data scientists and physicians, ie, involving a clinician in the loop during AI development. Increased knowledge may also positively affect the acceptance and trust of AI. This paper describes the necessary steps involved in AI research and development, and thus identifies the possibilities, limitations, challenges, and opportunities, as seen from the perspective of a practising radiation oncologist. It offers the clinician with limited knowledge and experience in AI valuable tools to evaluate research papers related to an AI model application.
The use of AI holds great promise for radiation oncology, with many applications being reported in the literature, including some of which are already in clinical use. These are mainly in areas where AI provides benefits in efficiency (such as automatic segmentation and treatment planning). Prediction models that directly impact patient decision-making are far less mature in terms of their application in clinical practice. Part of the limited clinical uptake of these models may be explained by the need for broader knowledge, among practising clinicians within the medical community, about the processes of AI development. This lack of understanding could lead to low commitment to AI research, widespread scepticism, and low levels of trust. This attitude towards AI may be further negatively impacted by the perception that deep learning is a “black box” with inherently low transparency. Thus, there is an unmet need to train current and future clinicians in the development and application of AI in medicine. Improving clinicians' AI-related knowledge and skills is necessary to enhance multidisciplinary collaboration between data scientists and physicians, ie, involving a clinician in the loop during AI development. Increased knowledge may also positively affect the acceptance and trust of AI. This paper describes the necessary steps involved in AI research and development, and thus identifies the possibilities, limitations, challenges, and opportunities, as seen from the perspective of a practising radiation oncologist. It offers the clinician with limited knowledge and experience in AI valuable tools to evaluate research papers related to an AI model application.
Up to 6% of the global population is estimated to be affected by one of about 10,000 distinct rare diseases (RDs). RDs are, to this day, often not understood, and thus, patients are heavily underserved. Most RD studies are chronically underfunded, and research faces inherent difficulties in analyzing scarce data. Furthermore, the creation and analysis of representative datasets are often constrained by stringent data protection regulations, such as the EU General Data Protection Regulation. This review examines the potential of federated learning (FL) as a privacy-by-design approach to training machine learning on distributed datasets while ensuring data privacy by maintaining the local patient data and only sharing model parameters, which is particularly beneficial in the context of sensitive data that cannot be collected in a centralized manner. FL enhances model accuracy by leveraging diverse datasets without compromising data privacy. This is particularly relevant in rare diseases, where heterogeneity and small sample sizes impede the development of robust models. FL further has the potential to enable the discovery of novel biomarkers, enhance patient stratification, and facilitate the development of personalized treatment plans. This review illustrates how FL can facilitate large-scale, cross-institutional collaboration, thereby enabling the development of more accurate and generalizable models for improved diagnosis and treatment of rare diseases. However, challenges such as non-independently distributed data and significant computational and bandwidth requirements still need to be addressed. Future research must focus on applying FL technology for rare disease datasets while exploring standardized protocols for cross-border collaborations that can ultimately pave the way for a new era of privacy-preserving and distributed data-driven rare disease research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.