Machine Learning Techniques and Data Science 2021
DOI: 10.5121/csit.2021.111816
|View full text |Cite
|
Sign up to set email alerts
|

Federated Learning with Random Communication and Dynamic Aggregation

Abstract: Federated Learning (FL) is a setting that allows clients to train a joint global model collaboratively while keeping data locally. Due to FL has advantages of data confidential and distributed computing, interest in this area has increased. In this paper, we designed a new FL algorithm named FedRAD. Random communication and dynamic aggregation methods are proposed for FedRAD. Random communication method enables FL system use the combination of fixed communication interval and constrained variable intervals in … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 7 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?