Abstract:We present an analysis of the performance of Federated Learning in a paradigmatic natural-language processing task: Named-Entity Recognition (NER). For our evaluation, we use the language-independent CoNLL-2003 dataset as our benchmark dataset and a Bi-LSTM-CRF model as our benchmark NER model. We show that federated training reaches almost the same performance as the centralized model, though with some performance degradation as the learning environments become more heterogeneous. We also show the convergence… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.