2022 IEEE 8th International Conference on Network Softwarization (NetSoft) 2022
DOI: 10.1109/netsoft54395.2022.9844024
|View full text |Cite
|
Sign up to set email alerts
|

FedSA: Accelerating Intrusion Detection in Collaborative Environments with Federated Simulated Annealing

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
3
0
7

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
3

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(10 citation statements)
references
References 22 publications
0
3
0
7
Order By: Relevance
“…Detecting cyberattacks is essential in preventing and mitigating the consequences of attacks on networks. Several works have proposed using machine learning for Intrusion Detection Systems (Intrusion Detection System (IDS)) [17], [116], [119]. Deep learning is considered one of the most efficacious approaches in the cyberattack detection domain.…”
Section: A Cyberattack Detectionmentioning
confidence: 99%
See 2 more Smart Citations
“…Detecting cyberattacks is essential in preventing and mitigating the consequences of attacks on networks. Several works have proposed using machine learning for Intrusion Detection Systems (Intrusion Detection System (IDS)) [17], [116], [119]. Deep learning is considered one of the most efficacious approaches in the cyberattack detection domain.…”
Section: A Cyberattack Detectionmentioning
confidence: 99%
“…Deep learning models demand a relatively large dataset for training. Therefore, current cyberattack detection proposals use FL regarding the privacy issue [119]. In this scenario, we have n IDSes protecting their network.…”
Section: A Cyberattack Detectionmentioning
confidence: 99%
See 1 more Smart Citation
“…Isso permite que diversos participantes treinarem um modelo com ajuda de um servidor central sem compartilhamento de dados [Lim et al, 2020]. Um sistema de detecc ¸ão de intrusão voltado para dispositivos IoT, cada dispositivo monitora uma rede local e atua como participante do treinamento colaborativo utilizando os dados coletados da rede como conjunto de dados [Neto et al, 2022]. Os dispositivos IoT deverão se comunicar com um servidor agregador para realizar o treinamento colaborativo.…”
Section: Introduc ¸ãOunclassified
“…Os trabalhos atuais de aprendizado federado em dispositivos IoT geralmente são avaliados através de simuladores [Ciftler et al, 2020, Neto et al, 2022 ou utilizando dispositivos com maior poder computacional do que os dispositivos reais [Zhang et al, 2021, Mills et al, 2019. É complexo analisar e avaliar os desafios do aprendizado federado para dispositivos IoT em ambientes simulados através de computadores com alto desempenho.…”
Section: Introduc ¸ãOunclassified