Abstract:We consider a fluid flow in a time dependent domain $\Omega_f(t)=\Omega \setminus \Omega_s(t)\subset {\mathbb R}^3$, surrounding a deformable obstacle $\Omega_s(t)$. We assume that the fluid flow satisfies the incompressible Navier-Stokes equations in
$\Omega_f(t)$, $t>0$. We prove that, for any arbitrary exponential decay rate $\omega>0$, if the initial condition of the fluid flow is small enough in some norm, the deformation of the boundary $\partial \Omega_s(t)$ can be chosen so that
the fluid flo… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.