Invasive species are a major threat to biodiversity of native fishes in North America. In Atlantic coastal rivers of the United States, large catfishes introduced from the Gulf of Mexico drainages have become established and contributed to native species declines. Flathead Catfish Pylodictis olivaris were introduced to the Chesapeake Bay drainage in the 1960s and 1970s in the James and Potomac river systems in the eastern United States. Diet studies have found James River Flathead Catfish function as apex predators and are known to consume at-risk Alosa spp. To limit further range expansion and impacts to native species, resource management agencies need information on population characteristics to support population assessments and management plan development. Thus, we examined temporal trends in growth rates and estimated total instantaneous mortality for tidal James River Flathead Catfish collected by Virginia Department of Game and Inland Fisheries from 1997 to 2015. Parameters of the von Bertalanffy growth model with length-at-age observations pooled across sampling years were estimated as L ' ¼ 1,059 mm, k ¼ 0.231/y, and t 0 ¼ 0.55 y. Flathead Catfish growth differed among sampling years, especially for the years 2007 and 2014, which had the largest sample sizes. However, there were no obvious temporal trends in growth trajectories. James River Flathead Catfish tend to grow much faster than most populations used in development of the relative growth index, but the species is known to grow faster in its nonnative range. Consequently, scientists and managers should use caution when applying growth indices if native and nonnative populations are not expressly considered in development of the index. We estimated total instantaneous mortality as Z ¼ 0.50 and mean natural mortality from six estimators as M ¼ 0.30. A lack of older individuals in the population means that mortality rates may be overestimated as a result of gear selectivity or ongoing maturation of the population. These data provide information to support future work examining the species in the James River and development of population models to evaluate management strategies and management plans.