Differential cryptanalysis is one of the oldest attacks on block ciphers. Can anything new be discovered on this topic? A related question is that of backdoors and hidden properties. There is substantial amount of research on how Boolean functions affect the security of ciphers, and comparatively, little research, on how block cipher wiring can be very special or abnormal. In this article we show a strong type of anomaly: where the complexity of a differential attack does not grow exponentially as the number of rounds increases. It will grow initially, and later will be lower bounded by a constant. At the end of the day the vulnerability is an ordinary single differential attack on the full state. It occurs due to the existence of a hidden polynomial invariant. We conjecture that this type of anomaly is not easily detectable if the attacker has limited resources.