Antiferroelectrics (AFE) can exhibit a "shape memory function controllable by electric field", with huge isotropic volumetric expansion (0.26%) associated with the AFE to Ferroelectric (FE) phase transformation. Small inverse electric field application can realize the original AFE phase. The response speed is quick (2.5 ms). In the Pb 0.99 Nb 0.02 [(Zr 0.6 Sn 0.4 ) 1-y Ti y ] 0.98 O 3 (PNZST) system, the shape memory function is observed in the intermediate range between high temperature AFE and low temperature FE, or low Ti-concentration AFE and high Ti-concentration FE in the composition. In the AFE multilayer actuators (MLAs), the crack is initiated in the center of a pair of internal electrodes under cyclic electric field, rather than the edge area of the internal electrodes in normal piezoelectric MLAs. The two-sublattice polarization coupling model is proposed to explain: (1) isotropic volume expansion during the AFE-FE transformation; and (2) piezoelectric anisotropy. We introduce latching relays and mechanical clampers as possible unique applications of shape memory ceramics.Keywords: antiferroelectrics; PNZST; shape memory ceramics; phase transformation; two-sublattice polarization coupling model; electrostriction
Development Trend of Solid State ActuatorsDevelopment of solid state actuators aimed at replacing conventional electromagnetic motors has been remarkable in the following three areas: precision positioning, vibration suppression and miniature motors. Particular attention has been given to piezoelectric/electrostrictive ceramic actuators, shape memory devices of alloys such as Ni-Ti and Cu-Zn-Al, and magnetostrictive actuators using Terfenol D (Tb-Fe-Dy) alloys. Rigid strains induced in a piezoelectric ceramic by an external electric field have been used as ultraprecision cutting machines, in the Hubble telescope on the space shuttle and in dot-matrix printer heads [1][2][3][4][5]. There has also been proposed a parabolic antenna made of shape memory alloy, which is in a compactly folded shape when first launched on an artificial satellite, and subsequently recovers its original shape in space when exposed to the heat of the sun. Smart skins on submarines or military tanks were targets for solid state actuators [6].In general, thermally-driven actuators such as shape memory alloys can show very large strains, but require large drive energy and exhibit slow response. Magnetic field-driven magnetostrictive devices have serious problems with size because of the necessity for the magnetic coil and shield. The subsequent Joule heat causes thermal dilatation in the system, and leakage magnetic field sometimes interferes with the operating hybrid electronic circuitry. On the contrary, electric field-driven piezoelectric and electrostrictive actuators have been most developed because of their high efficiency, quick response, compact size, no generation of heat or magnetic field, in spite of relatively small induced strains. This article reviews shape memory properties of ceramics, focusing o...