2021
DOI: 10.11113/aej.v11.17870
|View full text |Cite
|
Sign up to set email alerts
|

Fem-PGD Based Technique for Column Shape Optimization Against Buckling

Abstract: This paper presents a simple numerical procedure based upon the projected gradient descent (PGD) and finite element method (FEM) for the shape optimization of laterally restrained columns to attain the maximum elastic buckling load under the specified volumetric constraint. The analysis of the buckling load is achieved via the formulation based on Euler-Bernoulli beam theory, the discretization by the standard finite element technique, and the determination of the least eigenvalue and the corresponding eigenve… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?