The relaxation dynamics of the indoline dye D149, a well-known sensitizer for photoelectrochemical solar cells, have been extensively characterized in various organic solvents by combining results from ultrafast pump-supercontinuum probe (PSCP) spectroscopy, transient UV-pump VIS-probe spectroscopy, time-correlated single-photon counting (TCSPC) measurements as well as steady-state absorption and fluorescence. In the steady-state spectra, the position of the absorption maximum shows only a weak solvent dependence, whereas the fluorescence Stokes shift Dñ F correlates with solvent polarity. Photoexcitation at around 480 nm provides access to the S 1 state of D149 which exhibits solvation dynamics on characteristic timescales, as monitored by a red-shift of the stimulated emission and spectral development of the excited-state absorption in the transient PSCP spectra. In all cases, the spectral dynamics can be modeled by a global kinetic analysis using a time-dependent S 1 spectrum. The lifetime t 1 of the S 1 state roughly correlates with polarity [acetonitrile (280 ps) o acetone (540 ps) o THF (720 ps) o chloroform (800 ps)], yet in alcohols it is much shorter [methanol (99 ps) o ethanol (178 ps) o acetonitrile (280 ps)], suggesting an appreciable influence of hydrogen bonding on the dynamics. A minor component with a characteristic time constant in the range 19-30 ps, readily observed in the PSCP spectra of D149 in acetonitrile and THF, is likely due to removal of vibrational excess energy from the S 1 state by collisions with solvent molecules. Additional weak fluorescence in the range 390-500 nm is observed upon excitation in the S 0 -S 2 band, which contains short-lived S 2 -S 0 emission of D149. Transient absorption signals after excitation at 377.5 nm yield an additional time constant in the subpicosecond range, representing the lifetime of the S 2 state. S 2 excitation also produces photoproducts.