This article discusses the process of the laser turning of rotational symmetric, cylindrical components using ultrashort laser pulses with respect to the geometrical conditions and the resulting energy distribution during the laser turning process. As a result, process predictions and potential process optimizations are feasible. Particular attention is drawn to the laser spot formation on the cylindrical surface of the work piece in conjunction with the positioning of the laser beam relative to the rotation axis of the specimen. Based on fundamental calculations and experimental results, an optimum processing strategy is discussed, whereat the use of a trepanning optic in the laser turning process and the forming of a particular surface structure is additionally being issued.