In 1954, Dicke predicted that a system of quantum emitters confined to a subwavelength volume would produce a superradiant burst. For such a burst to occur, the emitters must be in the special Dicke state with zero dipole moment. We show that a superradiant burst may also arise for non-Dicke initial states with a nonzero dipole moment. Both for Dicke and non-Dicke initial states, superradiance arises due to a decrease in the dispersion of the quantum phase of the emitter state. For non-Dicke states, the quantum phase is related to the phase of long-period envelopes which modulate the oscillations of the dipole moments. A decrease in the dispersion of the quantum phase causes a decrease in the dispersion of envelope phases that results in constructive interference of the envelopes and the superradiant burst.