Femtosecond time-resolved photoelectron spectroscopy is emerging as a useful technique for investigating excited state dynamics in isolated polyatomic molecules. The sensitivity of photoelectron spectroscopy to both electronic configurations and vibrational dynamics makes it well suited to the study of ultrafast nonadiabatic processes. We review the conceptual interpretation of wavepacket dynamics experiments, emphasizing the role of the final state. We discuss the advantages of the molecular ionization continuum as the final state in polyatomic wavepacket experiments and show how the electronic structure of the continuum can be used to disentangle electronic from vibrational dynamics. We illustrate these methods with examples from diatomic wavepacket dynamics, internal conversion in polyenes and polyaromatic hydrocarbons, excited state intramolecular proton transfer, and azobenzene photoiosomerization dynamics.