Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Abstract5‐fluorouracil (5‐FU) is a preferred chemotherapeutic agent for the treatment of colon cancer. Nonetheless, its clinical effectiveness is frequently hampered by suboptimal therapeutic outcomes and the emergence of drug resistance. Therefore, there exists a pressing demand for novel therapeutic agents to circumvent chemoresistance. The pregnane X receptor (PXR) exerts a pivotal regulatory influence on the proliferation, invasion, and chemoresistance mechanisms in colon cancer. Activation of PXR drives up the transcription of the multidrug resistance gene (MDR1), thus prompting the expression of P‐glycoprotein (P‐gp) responsible for conferring tumour resistance. This study scrutinized the potential of Fengliao Changweikang (FLCWK) in augmenting the efficacy of 5‐FU in the management of colon cancer. To this end, we engineered colon cancer cells with varied levels of PXR expression via lentiviral transfection, subsequently validating the findings in nude mice. By means of MTT assays, flow cytometry apoptosis analysis, Western blotting and immunofluorescence, we probed into the prospective impacts of FLCWK and 5‐FU on cellular viability and resistance. Our results revealed that while upregulation of PXR amplified the therapeutic benefits in colon cancer treatment, it concurrently heightened resistance levels. FLCWK demonstrated a capacity to reduce P‐gp expression, with the combined administration of FLCWK and 5‐FU effectively reversing resistance mechanisms. Furthermore, activation of PXR was found to impede the IL‐6/STAT3 signalling pathway. In an effort to mimic the development of colon cancer, we established an azomethane oxide (AOM)/ dextran sodium sulfate (DSS) mouse model, showing that FLCWK bolstered the inhibitory effects of 5‐FU, impeding the progression of colon cancer. In summation, our findings point towards the potential of FLCWK in the treatment of colon cancer, particularly in strengthening the therapeutic efficacy of 5‐FU in the prevention and control of the disease.
Abstract5‐fluorouracil (5‐FU) is a preferred chemotherapeutic agent for the treatment of colon cancer. Nonetheless, its clinical effectiveness is frequently hampered by suboptimal therapeutic outcomes and the emergence of drug resistance. Therefore, there exists a pressing demand for novel therapeutic agents to circumvent chemoresistance. The pregnane X receptor (PXR) exerts a pivotal regulatory influence on the proliferation, invasion, and chemoresistance mechanisms in colon cancer. Activation of PXR drives up the transcription of the multidrug resistance gene (MDR1), thus prompting the expression of P‐glycoprotein (P‐gp) responsible for conferring tumour resistance. This study scrutinized the potential of Fengliao Changweikang (FLCWK) in augmenting the efficacy of 5‐FU in the management of colon cancer. To this end, we engineered colon cancer cells with varied levels of PXR expression via lentiviral transfection, subsequently validating the findings in nude mice. By means of MTT assays, flow cytometry apoptosis analysis, Western blotting and immunofluorescence, we probed into the prospective impacts of FLCWK and 5‐FU on cellular viability and resistance. Our results revealed that while upregulation of PXR amplified the therapeutic benefits in colon cancer treatment, it concurrently heightened resistance levels. FLCWK demonstrated a capacity to reduce P‐gp expression, with the combined administration of FLCWK and 5‐FU effectively reversing resistance mechanisms. Furthermore, activation of PXR was found to impede the IL‐6/STAT3 signalling pathway. In an effort to mimic the development of colon cancer, we established an azomethane oxide (AOM)/ dextran sodium sulfate (DSS) mouse model, showing that FLCWK bolstered the inhibitory effects of 5‐FU, impeding the progression of colon cancer. In summation, our findings point towards the potential of FLCWK in the treatment of colon cancer, particularly in strengthening the therapeutic efficacy of 5‐FU in the prevention and control of the disease.
Background. Colitis-associated colorectal cancer (CAC) develops from active colonic inflammation, which is characterized by the production of proinflammatory cytokines that can induce mutations. IL-6 is produced by multiple cell types located within the tumor microenvironment including tumor-infiltrating immune cells, stromal cells, and the tumor cells themselves. The aim of our study was to explore the mechanism of Feng-Liao-Chang-Wei-Kang (FLCWK) and 5-fluorouracil (5-FU) in treating CAC. Method. HCT116 cells were treated with 5-FU in the absence or presence of FLCWK. Cell proliferation was assayed by MTT assays. Apoptosis and the cell cycle phases were detected by flow cytometry. Western blotting and Q-PCR assays were used to detect the expression levels of proteins and genes related to the IL-6/STAT3 signalling pathway. A mouse model for CAC was established by treating animals with 12.5 mg/kg azoxymethane (AOM) followed by 3 cycles of 2.5% dextran sodium sulphate (DSS). The associated pathological changes were determined after haematoxylin and eosin (H&E) staining. The expression of related proteins and genes in various tissues was examined using immunofluorescence techniques. Results. FLCWK enhanced the ability of 5-FU to promote apoptosis by inhibiting the proliferation of HCT116 cells and blocking the IL-6/STAT3 pathway. FLCWK combined with 5-FU reduced the number and size of colon tumors in mice with CAC and significantly increased their survival rate. In the CAC model, FLCWK synergized with 5-FU to inhibit the phosphorylation of STAT3, preventing IL-6/STAT3 signal transduction and thus further inducing apoptosis and inhibition of colon cancer cell proliferation. Conclusion. FLCWK can inhibit the activation of STAT3 by reducing the production of IL-6, thereby increasing the occurrence of colitis-related colorectal cancer with 5-FU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.