This work reports pure component parameters for the PCP-SAFT equation of state for 1842 substances using a total of approximately 551 172 experimental data points for vapor pressure and liquid density. We utilize data from commercial and public databases in combination with an automated workflow to assign chemical identifiers to all substances, remove duplicate data sets, and filter unsuited data. The use of raw experimental data, as opposed to pseudoexperimental data from empirical correlations, requires means to identify and remove outliers, especially for vapor pressure data. We apply robust regression using a Huber loss function. For identifying and removing outliers, the empirical Wagner equation for vapor pressure is adjusted to experimental data, because the Wagner equation is mathematically rather flexible and is thus not subject to a systematic model bias. For adjusting model parameters of the PCP-SAFT model, nonpolar, dipolar and associating substances are distinguished. The resulting substance-specific parameters of the PCP-SAFT equation of state yield in a mean absolute relative deviation of the of 2.73% for vapor pressure and 0.52% for liquid densities (2.56% and 0.47% for nonpolar substances, 2.67% and 0.61% for dipolar substances, and 3.24% and 0.54% for associating substances) when evaluated against outlierremoved data. All parameters are provided as JSON and CSV files.