Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Self-consistent strong plasma screening around light nuclei is implemented in the Big Bang nucleosynthesis (BBN) epoch to determine the short-range screening potential, e ϕ(r)/T ≥ 1, relevant for thermonuclear reactions. We numerically solve the nonlinear Poisson–Boltzmann equation incorporating Fermi–Dirac statistics, adopting a generalized screening mass to find the electric potential in the cosmic BBN electron–positron plasma for finite-sized α particles (4He++) as an example. Although the plasma follows Boltzmann statistics at large distances, Fermi–Dirac statistics is necessary when work performed by ions on electrons is comparable to their rest-mass energy. While self-consistent strong screening effects are generally minor owing to the high BBN temperatures, they can enhance the fusion rates of high-Z (Z > 2) elements while leaving fusion rates of lower-Z (Z ≤ 2) elements relatively unaffected. Our results also reveal a pronounced spatial dependence of the self-consistent strong screening potential near the nuclear surface. These findings about the electron–positron plasma’s role refine BBN theory predictions and offer broader applications for studying weakly coupled plasmas in diverse cosmic and laboratory settings.
Self-consistent strong plasma screening around light nuclei is implemented in the Big Bang nucleosynthesis (BBN) epoch to determine the short-range screening potential, e ϕ(r)/T ≥ 1, relevant for thermonuclear reactions. We numerically solve the nonlinear Poisson–Boltzmann equation incorporating Fermi–Dirac statistics, adopting a generalized screening mass to find the electric potential in the cosmic BBN electron–positron plasma for finite-sized α particles (4He++) as an example. Although the plasma follows Boltzmann statistics at large distances, Fermi–Dirac statistics is necessary when work performed by ions on electrons is comparable to their rest-mass energy. While self-consistent strong screening effects are generally minor owing to the high BBN temperatures, they can enhance the fusion rates of high-Z (Z > 2) elements while leaving fusion rates of lower-Z (Z ≤ 2) elements relatively unaffected. Our results also reveal a pronounced spatial dependence of the self-consistent strong screening potential near the nuclear surface. These findings about the electron–positron plasma’s role refine BBN theory predictions and offer broader applications for studying weakly coupled plasmas in diverse cosmic and laboratory settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.