Abstract.A general method is proposed for calculating a fully k-dependent, continuous, and causal spectral function A(k, E) within the recently introduced nonlocal version of the coherent-potential approximation (NLCPA). The method involves the combination of both periodic and anti-periodic solutions to the associated cluster problem and also leads to correct bulk quantities for small cluster sizes. We illustrate the method by investigating the Fermi surface of a two-dimensional alloy. Dramatically, we find a smeared electronic topological transition not predicted by the conventional CPA.