It has been proposed that in a part of the parameter space of the Standard Model completed by three generations of keV...GeV right-handed neutrinos, neutrino masses, dark matter, and baryon asymmetry can be accounted for simultaneously. Here we numerically solve the evolution equations describing the cosmology of this scenario in a 1+2 flavour situation at temperatures T ≤ 5 GeV, taking as initial conditions maximal lepton asymmetries produced dynamically at higher temperatures, and accounting for late entropy and lepton asymmetry production as the heavy flavours fall out of equilibrium and decay. For 7 keV dark matter mass and other parameters tuned favourably, ∼ 10% of the observed abundance can be generated. Possibilities for increasing the abundance are enumerated.