Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We show that all lowest Landau-level projected and unprojected chiral parton type fractional quantum Hall ground and edge-state trial wave functions, which take the form of products of integer quantum Hall wave functions, can be expressed as conformal field theory (CFT) correlation functions, where we can associate a chiral algebra to each parton state such that the CFT defined by the algebra is the “smallest” such CFT that can generate the corresponding ground and edge-state trial wave functions (assuming that the corresponding chiral algebra does indeed define a physically “sensible” CFT). A field-theoretic generalization of Laughlin's plasma analogy, known as generalized screening, is formulated for these states. If this holds, along with an additional assumption, we argue that the inner products of edge-state trial wave functions, for parton states where the “densest” trial wave function is unique, can be expressed as matrix elements of an exponentiated local action operator of the CFT, generalizing the result of Dubail [], which implies the equality between edge-state and entanglement level counting to state counting in the corresponding CFT. We numerically test this result in the case of the unprojected ν=2/5 composite fermion state and the bosonic ν=1ϕ22 parton state. We discuss how Read's arguments [] still apply, implying that conformal blocks of the CFT defined by the corresponding chiral algebra are valid quasihole trial wave functions, with the adiabatic braiding statistics given by the monodromy of these functions, assuming the existence of a quasiparticle trapping Hamiltonian. Generalizations of these constructions are discussed, with particular attention given to simple current constructions. It is shown that all chiral composite fermion wave functions can be expressed as CFT correlation functions without explicit symmetrization or antisymmetrization and that the ground, edge, and certain quasihole trial wave functions of the ϕnm parton states can be expressed as the conformal blocks of the U(1)⊗SU(n)m WZW models. Finally, we discuss the relation of the ϕ2k series with the Read-Rezayi series, where several examples of quasihole braiding statistics calculations are given. Published by the American Physical Society 2024
We show that all lowest Landau-level projected and unprojected chiral parton type fractional quantum Hall ground and edge-state trial wave functions, which take the form of products of integer quantum Hall wave functions, can be expressed as conformal field theory (CFT) correlation functions, where we can associate a chiral algebra to each parton state such that the CFT defined by the algebra is the “smallest” such CFT that can generate the corresponding ground and edge-state trial wave functions (assuming that the corresponding chiral algebra does indeed define a physically “sensible” CFT). A field-theoretic generalization of Laughlin's plasma analogy, known as generalized screening, is formulated for these states. If this holds, along with an additional assumption, we argue that the inner products of edge-state trial wave functions, for parton states where the “densest” trial wave function is unique, can be expressed as matrix elements of an exponentiated local action operator of the CFT, generalizing the result of Dubail [], which implies the equality between edge-state and entanglement level counting to state counting in the corresponding CFT. We numerically test this result in the case of the unprojected ν=2/5 composite fermion state and the bosonic ν=1ϕ22 parton state. We discuss how Read's arguments [] still apply, implying that conformal blocks of the CFT defined by the corresponding chiral algebra are valid quasihole trial wave functions, with the adiabatic braiding statistics given by the monodromy of these functions, assuming the existence of a quasiparticle trapping Hamiltonian. Generalizations of these constructions are discussed, with particular attention given to simple current constructions. It is shown that all chiral composite fermion wave functions can be expressed as CFT correlation functions without explicit symmetrization or antisymmetrization and that the ground, edge, and certain quasihole trial wave functions of the ϕnm parton states can be expressed as the conformal blocks of the U(1)⊗SU(n)m WZW models. Finally, we discuss the relation of the ϕ2k series with the Read-Rezayi series, where several examples of quasihole braiding statistics calculations are given. Published by the American Physical Society 2024
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.