Fucoxanthin is a bioactive compound that is a kind of natural carotenoid. Fucoxanthin is known to protect against UV-B-induced cell damage in hairless mice, even though it is physiochemically unstable to heat and acid due to its polyunsaturated structure, indicating that fucoxanthin possesses a low bioavailability, and this disadvantage limits its application in the cosmetic industry. Solid lipid nanoparticle (SLN) systems are known to be suitable as carriers for sunscreen agents. In this research work, the sunscreen-boosting effect of SLN, as a deliverer of functional ingredient, especially fucoxanthin, has been developed and evaluated by comparing the sunburn protection factors (SPF) of macroemulsion (cream and lotion type) and an SLN formula containing various kinds of sunscreen agents, respectively. Several results such as stability test, particle size, DSC analysis, and X-ray analysis show that the SLN formula loading fucoxanthin has the possibility of being a stable and high-functioning ingredient delivery system. Moreover, the SLN formula has shown a higher SPF value than others, meaning that the SLN formula exhibits a good sunscreen-boosting effect. This study indicates that the use of SLN as a carrier enhanced the bioavailability of fucoxanthin and shows that SLN could be a promising carrier for the production of sunscreen products by allowing the scaling-up of production.