Structural similarities between ferritins and bacterioferritins have been extensively demonstrated. However, there is an essential difference between these two types of ferritins: whereas bacterioferritins bind haem, in-vivo, as Fe(II)-protoporphyrin IX (this haem is located in a hydrophobic pocket along the 2-fold symmetry axes and is liganded by two axial Met 52 residues), eukaryotic ferritins are non-haem iron proteins. However, in in-vivo studies, a cofactor has been isolated from horse spleen apoferritin similar to protoporphyrin IX; in in-vitro experiments, it has been shown that horse spleen apoferritin is able to interact with haemin (Fe(III)-protoporphyrin IX). Studies of haemin incorporation into horse spleen apoferritin have been carried out, which show that the metal free porphyrin is found in a pocket similar to that which binds haem in bacterioferritins (Pre´cigoux et al. 1994 Acta Cryst D50, 739-743). A mechanism of demetallation of haemin by L-chain apoferritins was subsequently proposed (Crichton et al. 1997 Biochem 36, 15049-15054) which involved four Glu residues (E 53,56,57,60) situated at the entrance of the hydrophobic pocket and appeared to be favoured by acidic conditions. To verify this mechanism, these four Glu have been mutated to Gln in recombinant horse L-chain apoferritin. We report here the EPR spectra of recombinant horse L-chain apoferritin and its mutant with haemin in basic and acidic conditions. These studies confirm the ability of recombinant L-chain apoferritin and its mutant to incorporate and demetallate the haemin in acidic and basic conditions.