To date, the production of such ferroalloys as ferrosilicon, ferromanganese, ferosilicomanganese, high-carbon ferrochrome amounts to thousands of tons per year. Preparation of the ferroalloy for sale involves crushing the ferroalloy ingot to the commercial fraction, as a result of which there are dust-like screenings, which are further stored in warehouses and harm the environment. The existing sieving is a finished product, which in composition is close to the final fraction, the size of which is 10-250 mm. To apply sieving in steel production technology, it must be re-melted and cast into an ingot. The resulting ingot is repeatedly crushed until a commercial fraction is obtained. The main problem is the remelting of the dropout, since various difficulties arise due to its size and electrophysical properties. This article presents methods and installations for remelting sieving ferroalloys of various brands, as well as their comparison, disadvantages and advantages. The article describes plasma, induction crucible, as well as dual DC and AC installations designed for remelting sieving of various ferroalloys with a fraction less than 10 mm. The disadvantages and advantages of each method and remelting installation are described. Various experimental data obtained during the melting of ferroalloys sieving in the described installations are presented. Based on the data described in the article, as well as relying on other conclusions, in conclusion, a method of remelting with the removal of ferroalloys was proposed, including the advantages of existing ones, as well as excluding their disadvantages.