A series of polychalcogenotrimethylsilane complexes Ar(CH2ESiMe3)n, (Ar = aryl; E = S, Se; n = 2, 3, and 4) can be prepared from the corresponding polyorganobromide and M[ESiMe3] (M = Na, Li). These represent the first examples of the incorporation of such a large number of reactive -ESiMe3 moieties onto an organic molecular framework. They are shown to be convenient reagents for the preparation of the polyferrocenylseleno- and thioesters from ferrocenoyl chloride. The synthesis, structures, and spectroscopic properties of the new silyl chalcogen complexes 1,4-(Me3SiECH2)2(C6Me4) (E = S, 1; E = Se, 2), 1,3,5-(Me3SiECH2)3(C6Me3) (E = S, 3; E = Se, 4) and 1,2,4,5-(Me3SiECH2)4(C6H2) (E = S, 5; E = Se, 6) and the polyferrocenyl chalcogenoesters [1,4-{FcC(O)ECH2}2(C6Me4)] (E = S, 7; E = Se, 8), [1,3,5-{FcC(O)ECH2}3(C6Me3)] (E = S, 9; E = Se, 10) and [1,2,4,5-{FcC(O)ECH2}4(C6H2)] (E = S, 11 illustrated; E = Se, 12) are reported. The new polysilylated reagents and polyferrocenyl chalcogenoesters have been characterized by multinuclear NMR spectroscopy ((1)H, (13)C, (77)Se), electrospray ionization mass spectrometry and, for complexes 1, 2, 3, 4, 7, 8, and 11, single-crystal X-ray diffraction. The cyclic voltammograms of complexes 7-11 are presented.