A switching-type power converter providing an accurate and stable switching output voltage against line/load variations and power supply ripple is mostly complicated in system-on-chip power management integrated circuits (PMICs) within a limited occupation area. Here we fabricated domain wall (DW) nanodevices using an X-cut LiNbO 3 thin film on silicon. The domain switching event occurs after a delay time predicted by Merz's law under the applied voltage. But the output current is irrespective of the applied voltage and can be adjusted by conducting wall width as well as input resistance in the circuit. The regulating currents appear repetitively across the volatile interfacial domains between the nanodevice and electrode under intermittently applied voltages. A wall-current-limited domain switching model is developed to explain the phenomenon. The multifunctional DW nanodevices with smaller occupation areas can serve as compact low-dropout regulators in PMICs, time-domain delayers in energy-efficient neural network systems, and on-chip electrostatic discharge protection besides nonvolatile memories and selectors.